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ABSTRACT

This paper attempts to show that redundancies in some aerospace mechanisms do

not generally improve the odds for success. Some of these redundancies may even

be the very cause for failure of the system. To illustrate this fallacy, two

designs based on the Control of Flexible Structures I (COFS I) Mast deployer and

retractor assembly (DRA) are presented together with novel designs to circumvent

such design inadequacies, while improving system reliability.

INTRODUCTION

One of the general principles held closely and dearly by mechanical designers

and engineers is the incorporation of redundancies in the design of their mechani-

cal and electromechanical systems. For good system reliability, redundancies are

incorporated to improve the chances for success, and generally do; however, there

are some types of redundancies that fall to do so. In fact, this paper, in

describing two aerospace mechanism designs, will illustrate that some redundancies

may decrease the chances for system success. Although the set of such undesirable

types of redundancies described herein is small, it is worth documenting such

types that do not perform to expectation. Other approaches can be taken instead

to improve the odds. Redundancies can also introduce other penalties (such as

space, weight, efficiency and fabrication costs) which should be weighed against

the expected benefits of the redundancies introduced into the system.

One type of redundancy that is undesirable relates to conditions within the

system. A given failure of a component or subsystem may change the environment such

that the redundant component or subsystem does not perform to its expected level.

Such a redundancy degradation can, at times, be anticipated so that designs around
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the obstacle can be adopted. As an example, failures occurred in some recent

development and deployment tests conducted on the Magellan (Venus Mapper)

Spacecraft when a particular lot of pyrotechnic pin pullers, ones that incorporate

a redundant initiator, failed to function properly. As part of an engineering

evaluation, the contractor conducting the tests determined that

lo The shock pulse from the first initiator could prove sufficient

to permanently distort the bore of the pin puller, thereby

preventing piston motion. A subsequent firing of the second

initiator would not improve this situation. Fabrication and

quality assurance problems were also present in these units.

o Further design consideration by others revealed that if the

first initlator's output was insufficient, firing this initi-

ator could contaminate the interior surface with sufficient

particulate deposits to inhibit free piston movement if such

movement had not already taken place. It is possible that

enough particulate contamination could be introduced between

the piston and bore to prevent any piston motion with a subse-

quent firing of the second initiator.

This paper considers another type of undesirable redundancy which introduces

a condition of over constraint to aerospace mechanisms. To adequately explain and

illustrate this type of redundancy, two mechanism designs within the COFS I DRA

will be used to show how such a type of redundancy can actually be the cause for

system failure. The two mechanisms are the lead-screw drive and the diagonal

fold-arm bell-crank linkage. In the sections that follow, a description is given

of the design of each of these mechanisms, how they function within the COFS I

DRA, how their expected redundancy can cause failure, and how the design can be

improved.

BACKGROUND

As a subset of COFS I, the Mast Flight System (MFS), figure i, incorporating

a reusable, deployable-restowable truss beam as a test bed, was conceived to

bridge the gap between ground and on-orblt modal verification, and validation of

control methodologies. A description of the specific subsystems of the MFS 9 of

which the deployer and retractor assembly (DRA) is one of the major functional

components, can be found in reference I.

OPERATION OF THE COFS DEPLOYER/RETRACTOR ASSEMBLY (DRA)

The main function of the DRA is to deploy and retract the beam out of and

into the Shuttle payload bay in a continuous, smooth motion. This sequence of

deployment and retraction is shown in figure 2. Figure 3 shows the DRA with
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the beam partially deployed. Central to the DRA is an annular box called the

upper drive assembly. This box contains two sets of mechanisms. One is a gear

train designed for simultaneous power transmission to three lead-screws used to

deploy or retract the beam. The other is a spatial linkage designed to unlock and

open the beam's diagonal latches and hence initiate folding of the beam during the

retraction process. These mechanisms are illustrated in figure 4.

The deploy or restow drive mechanism is powered by a deployer motor via a

gearbox so as to enable the lead-screws to change their direction and speed of

rotation. The mechanism consists of six drive shafts, lald end-to-end to form a

loop, much like the sides of a hexagon. At the ends of each shaft are bevel

gears, so that power may be transmitted from one shaft to. the next, around this

hexagonal loop, back to itself. Power take-offs for the lead-screws occur at

every other set of beveled gears. The redundancy arises from the continuous

loop--failure of any drive shaft or bevel gear will not disrupt the ability of

this mechanism to transmit power to the set of three lead-screws. Such a gearing

system is called a reclrculating gear train [references 2-4]. Other types of

power reclrculatlng arrangements have been used in the testing of belts and chain

drives [references 5 and 6].

In the process of deploying the beam, the deployer drive motor rotates in a

direction such that the lead-screws move the nodal fittings (corner bodies)

located at the corners of the beam. As the corner bodies ride along the lead-

screws, the immediate folded stack bay of the beam begins to unfold. Since the

lead-screw rotation is continuous, the unfolding, and hence the deployment of the

beam, is smooth and continuous. The reverse is also true for the retraction of

the beam. At the deployed position for each beam bay-pair, the diagonal links are

straightened and the mid-span hinges and latches are spring loaded so that the
beam behaves as a structure.

To begin retracting the beam, the same spring loaded latches on the diagonal

links must be unlocked to permit the diagonal links to fold. To fold these spring

latches, the diagonal fold-arm drive system is used. Simultaneously, as these

latches are being folded, the separate deployer motor is driving the lead-screws

in the restow direction. This causes the corner bodies to move down into the DRA,

thereby completing the folding and stowing of each bay-palr of the beam. This

sequence is repeated until the beam is restowed.

In the following sections, an examination of how redundancies in the lead-

screw drive gear train and in the bell-crank linkage could be the very factors

that can cause failures _-Ithln the DRA will be presented. This examination begins

with the bell-crank mechanism.

BELL-CRANK LINKAGE

In the bell-crank linkage (figure 4) that is located in the upper drive

assembly (figure 3) of the DRA, a crank-and-rocker linkage, driven by the retractor

motor through a diagonal fold-arm drive gear, is concatenated to the bell-crank.

Rotation of the diagonal fold-arm drive motor results in oscillatory motion of the

bell-crank linkage. This linkage consists of six triangular oscillatory members,

or links, that are located at the corners of a hexagon. These triangular links

are connected to each other by six straight members to form a hexagonal continuous
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or closed-loop. While minimizing backlash, this loop is anticipated to provide

redundancy in the event of failure of any of the bell-crank or straight link mem-

bers. A power take-off at each alternate bell-crank, transfers the oscillatory

motion of the bell-crank linkage drive to a spatial six-bar linkage that transmits

power to the upper and lower diagonal fold-arms. These diagonal fold-arms press

on the near-over-center hinge latches to effect folding of the diagonal during the

initial stages of the retraction process for each bay-pair of the beam.

Next, consider the six couplers that link the bell-cranks together to form

the hexagonal loop. Normally, only five such links are needed. In the event any

one of these links were to fail, a sixth coupler link was incorporated to complete

the loop, thereby ensurin_ that the bell-crank linkage would still perform its

function. In this way, a redundant power path to retract the beam back into the

canister is still maintained to all the diagonal fold-arms should any coupler link

fail. Such a redundancy has obvious advantages. It absolves the need for a

totally separate system that would increase cost, weight, complexity and space

requirements; and, according to the subcontract designers, it would also provide

some degree of structural integrity to the mechanism in the form of lower system

backlash.

General Observations on Mobility

Careful design considerations are needed to introduce this sixth coupler

link. In fact, without judicious dimensional choices for the bell-crank mecha-

nism, the resulting hexagonal loop (with the sixth coupler link) will act as a

structure, not a mechanism and therefore will not move! A brief proof follows:

A kinematic equivalent for an arbitrarily dimensioned bell-

crank mechanism is shown in figure 5. In this figure,

link #i is the ground (fixed) link. Applying the degree-of-

freedom (d.o.f.) equation attributed to Gruebler [reference

7 and 8] for this linkage we have;

Link #I is the ground link.

Using the d.o.f, equation, F = %(L-j-I) + Zfi

Where for planar mechanism,

= Mobility number = 3

L = Total # of links = 13,

j = Total # of joints = 18, and

fi = d.o.f, of the ith joint = i.

substituting F = 3(13-18-1) + 18

so that F = 0

Which states that the bell-crank mechanism is a zero d.o.f, system and is there-

fore a structure and will not move!

Special Dimensions for the Bell-Crank Mechanism

There are special dimensional requirements for this linkage that will per-

mit the bell-crank mechanism to exhibit a single d.o.f. The theory is based on

that of a folding linkage [reference 8]. The folding linkage is a four-bar where
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the dimensions of its opposite links are equal, such that the four-bar constitutes

a parallelogram. A principal characteristic of the folding linkage is that any

given angular rotation on the input llnk is exactly duplicated at the output link.

Such a linkage therefore (a) ensures a design with one d.o.f., (b) allows the

bell-crank and folding arm members to operate as a mechanism, and (c) maintains

the synchronization of all the folding arms (upper and lower pairs)--a total of

six in the DRA. Based on the characteristics of the folding linkage and on suf-

ficiency conditions, a workable design for the bell-crank mechanism would be

. All coupler links must be the same length (from figure 5, they

are links #3, 5, 7, 9, ii, 13), and that same length must also

be equal to the distance between two adjacent ground pivots of
the bell-cranks.

. All rocker links or sides of the bell-cranks (such as links

#2a, 2b, 4a, 4b, 6a, 6b, 8a, 8b, lOa, lOb, 12a and 12b) are of

the same length.

3. The angles (_) subtended by the bell-cranks at the pivots

must all be equal to 60 °.

With the above special dimensions, the bell-crank mechanism will exhibit a

single d.o.f, and will therefore move. Under this set of circumstances, the d.o.f.

equation will no longer apply. While the above design simplifies the choice of

dimensions, the number of parts are still a point of concern. The high part count

contributes to problems in tolerance buildup, reliability, cost, weight and space.

A more optimal approach to the design with improvements in all these factors will

be discussed later.

Danger of Over Constraint Redundancies

The loop arrangement for the bell-crank mechanism ensures a dual path for

power transmission to the upper and lower diagonal fold-arms in the event that a

coupler llnk within the mechanism fails. However, this redundancy may only be

academic. Recall that the bell-crank mechanism under general dimensions forms a

structure and is therefore immobile. The introduction of the sixth coupler llnk

as a redundancy has caused the mechanism to become over constrained. Fortunately,

with special dimensional requirements, the bell-crank mechanism can be made

movable with a single d.o.f. However, these special dimensional requirements

must be observed at all times during the planned operation of the DRA. The

problem is, in the hostile space environment, temperature gradients across the

mechanism could cause these dimensional requirements to be violated. This could

result in locking up the bell-crank mechanism (reverting it back to a structure)

or could cause high link- and bearing-loadlngs within the mechanism. Even in the

absence of temperature gradients, the costs and complexity of ensuring tight

toleranclng may well be undesirable.

This bell-crank mechanism therefore serves to illustrate the danger of

introducing a redundancy into a mechanism that will result in an over constrained

system. With special dimensional requirements, the mechanism may be made

movable. However, the strict requirements of dimensional control in hostile

environments may not be readily realized in practice. This could bring about

failure of the system, ironically due to that very redundancy.
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While this example is based on that for a linkage mechanism, the principle is

equally applicable to gear drive mechanisms. The next section discusses the

danger of such over constraint redundancies in the lead-screw drive mechanism of
the DRA.

LEAD-SCREW DRIVE MECHANISM

The lead-screw drive mechanism is powered by a deployer motor via a gearbox

which enables the lead-screws to change their direction and speed of rotation. In

an arrangement similar to the bell-crank mechanism, the lead-screw drive mechanism

consists of six drive shafts, laid end-to-end to form a loop, much like the sides

of a hexagon shown in figure 4. At the ends of each shaft are bevel gears, so

that power may be transmitted from one shaft to the next, around this hexagonal

loop, back to itself. It can be seen that power take-offs for the lead-screws

occur at every other set of beveled gears in the hexagonal loop. The redundancy

arises from the continuous loop--failure of any drive shaft or bevel gear will not

disrupt the ability of this mechanism to transmit power to the set of three lead-

screws. Such a gearing system is called a recirculating gear train which can be

found in many machines, although rather infrequently, for a good reason.

A quick investigation into the general mobility of such a gear drive set-up

would show a zero d.o.f. A brief proof for this system follows:

Again applying the d.o.f, equation [reference 7 and 8] for

this loop we have;

With link #i as the ground link.

Using the d.o.f, equation, F = %(L-j-I) +Z fi

Where for planar mechanism,

% = Mobility number = 3

L = Total # of links = 13,

j = Total # of joints = 24, and

Zfi = Total d.o.f, of all joints = 36.

substituting F = 3(13-24-1) + 36 = 0

so that F = 0

Which states that, as in the bell-crank mechanism, this gear train has a zero

d.o.f, and is therefore a structure!

This gear train is only operable when special dimensions are instituted

into the design. The difficulty of maintaining the special dimensions needed in

recirculating gear trains testifies to the generally high tooth loadings and low

power transmission efficiencies observed. This is precisely what is observed in

gear torque testing machinery which also has similar recirculating gear train

arrangements [reference 9]. With inadequate design, the resultant low power trans-

mission efficiency could cause failure of the mechanism to perform its mission
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satisfactorily, if at all. In fact, during tests of a DRA feasibility of concept

model, a gear box failed and higher than predicted drive motor loads were

experienced. This was believed due, in part, to a lack of recognition of the need

to achieve and maintain special dimensions.

RECOMMENDATION ON DESIGN IMPROVEMENTS

The introduction of an additional llnk or drive shaft has caused the respective

mechanisms to become over constrained. Such kinematic structures for power

transfer, although commonly found within subcomponents such as constant velocity

joints and universal joints [references I0 and ii], may not be suitable for

aerospace applications. Therefore other approaches should be pursued.

One approach to eliminate the effects of over constraint within the system is

not to introduce it in the first place. For example, it is possible to design the

coupler links and the gear shafts to ensure that their failure would not occur.

Such would be the simplest approach if that is possible within the available space

and weight requirements.

Another approach is to use circular ring gear arrangements as illustrated in

figure 6. This design consists of two large ring gears that rotate concentric to

the axis of the canister. The innermost ring gear is driven by the deployer motor

and power is fed off to three gears to drive each of the three lead-screws. The

use of a ring gear makes the process of coordinating the rotation of the lead-

screws a trivial matter when compared to the present design.

In a similar manner, the outermost ring gear driven by the diagonal folding

mechanism motor, pushes and pulls on three push-pull cables as it oscillates back

and forth. These cables, after going through a very gradual 90 ° turn to orient

them parallel to the beam axis, drive the upper diagonal fold-arms which in turn

are coordinated with the respective lower diagonal fold-arms via a coupler llnk.

To save weight, this ring gear could be made up of gear sectors.

In comparison to the present design, this ring gear arrangement would save

space, reduce part count, and improve reliability.

SUMMARY

Two designs of mechanisms that have redundancies built-ln have been shown,

paradoxically, to be the very elements that can cause failure of the mechanism to

perform its function. In each of these designs, the introduction of the redun-

dancy causes the mechanism to become kinematlcally over constrained. While the

over constraint may be eliminated with special dimensional requirements placed

on the mechanism, these requirements may not be achievable in the hostile environ-

ment of space.

While redundancies do indeed generally improve the odds for mission success,

redundancies also exist that do not follow this general philosophy. The
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dangers of such fallacies, if unexplored and not emphasized, may lead to

significant redesign or loss of valuable experiments.
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F i g u r e  1.- Deployed 60 Meter Mast B e a m  
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DRA FUNCTION 
(DRA N o t  Shown For  Simplicity) Retraction 
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delatch and unfold 
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F i g u r e  3 . -  D R A  Deployed,  B e a m  P a r t i a l l y  Deployed 
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& RETRACTOR LINKAGE

drive assembly

couo]er "Deployer motor
link and gearbox

onal
fold drive

gear

)er
mount and diagonal
bearing fold-arm

diagonal
fold-arm

guide rail

Figure 4.- Lead-Screw and Fold-Arm (Retractor) Mechanism
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Figure 5.- Bell-Crank Mechanism Kinematic Equivalent
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SIDE VIEW

BOTTOM VIEW
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